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Abstract : Unstabilized P-methyl-1-phosphaallenes 1 are prepared by a base-induced dehydrohalo-
genation of 1-chlorovinyl-methylphosphines or rearrangement of 1-alkynyi-methylphosphines.

Although 1-phosphaallenes have been widely studied, only sterically stabilized derivatives have been des-
cribed so far.1-3 Such compounds are prepared either by a base-induced rearrangement of P-aryl-1-alkynyl-
phosphine intermediates 2 or through reaction of phosphaketenes with methylenephosphoranes 33 or silylated
phosphines.3b Efforts to apply the latter approach to the generation of 1-phosphaallenes with a less bulky
substituent at the P atom lead to the corresponding dimer.3b The synthetic utility of the reported methods is
restricted by hardly accessible unshielded starting materials. We have recently prepared unstabilized phos-
phaalkynes by dehydrohalogenation of the corresponding dichloroalkylphosphines 4 and by base-induced
rearrangement of primary 1-alkynylphosphines.5 In the latter approach, the presence of a phosphaallene inter-
mediate has been demonstrated. In this paper, we show that unstabilized P-methyl-1-phosphaallenes 1 can be
prepared by dehydrohalogenation of 1-chlorovinyl-methylphosphines and by rearrangement of 1-alkynyl-me-
thylphosphines.

Secondary 1-chlorovinyl- and ethynylphosphines 4a-c and 5a,b are prepared by chemoselective reduc-
tion at 0°C of the corresponding phosphinic esters 2a-c8 and 3a,b respectively using AIHCI; in tetraglyme
(Scheme 1).8 In both cases, formation of by-products resulting from C-P bond cleavage cannot be avoided.
Phosphines 4 and § are purified by trap-to-trap distillation, and may be kept for several days in solution at
room temperature in the presence of a small amount of hydroquinone. The structures are assigned on the basis
of 1H, 31p, 13C NMR and IR spectroscopy and mass spectrometry.9-11

Reactions in solution. Using DBU, dehydrochlorination of the phosphine 4a is observed at 0°C, but the
1-phosphaallene 1a is too unstable in these conditions to be characterized by 3!P NMR. Presence of this inter-
mediate is proved by addition of 2-propanethiol and formation of the 1,2-thiophosphine adduct 6a.12 Com-
pound 1a can be however detected by low temperature 31P NMR in the base-induced rearrangement of phos-
phine 5a : the chemical shift of the phosphorus atom of 1a is observed at & 42.0 ppm by warming up a THF
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solution of 5a from -78 to -20°C in the presence of a catalytic amount of DBU. When 2-propanethiol is ad-
ded, the 31P NMR signal of 1a disappears while the signal corresponding to 6a is observed (Scheme 1). In
both approaches, we failed in our attempts to isolate the phosphaallene 1a.
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Reactions in the gas-phase (VGSR). The two liquid-phase approaches to 1-phosphaallenc 1a precedently
described can also be performed in the gas-phase (VGSR)%.5 using K2CO3 heated to 250°C as a solid base.
‘Whatever the precursor (4a or 5a), a mixture of phosphaallenc 1a and 1-alkynylphosphine 3a is observed in
the sarme molar ratio (92 : 8 respectively). A mixture of 1b, 5b in a 55 : 45 molar ratio is also observed star-
ting from 4b or 5b (Scheme 2). A tautomeric equilibrium between § and 1 rationalizes these results. The
structures of compounds la-b are determined from their low temperature (-50°C) 1H, 13C and 31P NMR, IR
and mass spectra.!3 The observed values are in good agreement with those reported for bulky substituted de-
rivatives.2:3 As an example, the 13C NMR signals of 1a at 3 95.2 and 250.4 ppm are characteristic of the
chemical shifts of the two allenic carbons. The IR absorptions at 1715 and 869 cm-! have been tentatively at-
tributed to v and ve.p stretching respectively.14 Phosphaallenes 1 slowly oligomerize on warming to
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The gas-phase dehydrohalogenation of secondary chlorovinylphosphines provides an efficient synthesis
of C-disubstituted 1-phosphaallenes : thus, starting from the 1-chloro-2-methylpropenyl-methylphosphine 4c,
the 1-phosphaallene 1¢ is obtained in a nearly pure state in 38% yield (Equation 1).15



Cl 250°
st( Me KzC05,250°C M°'C:C:P-Mc 1
7’ - L4
Me P VGSR Me

4c 1c

The two approaches, basic dehydrohalogenation of secondary 1-chlorovinylphosphines and base-induced

rearrangement of secondary 1-alkynylphosphines, which are effective in solution and in the gas-phase, pro-
vide two efficient and convenient routes to unstabilized 1-phosphaallenes.
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Selected spectroscopic data : 4a : (yield : 52%) TH NMR (CDCl3) & : 1.34 (dd, 3H, 3Jgyg = 7.4 Hz,
2Jpy = 3.5 Hz); 4.05 (dq, 1H, Upy = 197.0 Hz, 3Jyy = 7.4 Hz); 5.77 (dd, 1H, 3Jpyg = 13.3 Hz,
2jyy = 1.4 Hz); 5.82 (dd, 1H, 3Jpy = 13.3 Hz, 2Jyy = 1.4 Hz); 31P NMR (CDCl3) 8 : -53 (IJpg =
197.0 Hz); 13C NMR (CDCl3) & : 4.45 (qd, Yy = 131 Hz, Jcp = 11 Hz); 125.3 (td, LJcy = 162.4
Hz, 2Jcp = 25.8 Hz); 141.1 (d, Jcp = 36.6 Hz). HRMS calcd. for C3Hg35CIP : 107.9896; found :
107.990. 4b (2 stereoisomers) (yield : 57%): TH NMR (CDCl3) & : 1,30 (d, 3H, 3Jgy = 7.6 Hz); 1.89
(dd, 3H, 4Jpy = 0.5 Hz, 3Jgy = 7.0 Hz); 3.90 (dq, 1H, Upy = 207.9 Hz, 3Jyy = 7.6 Hz); 6.39 (qd,
3Igg = 7.0 Hz, 3Jpy = 14.2 Hz) and 1.30 (d, 3H, 3Jgy = 7.6 Hz); 1.86 (dd, 3H, 4Jpy = 0.8 Hz,
3Jgy = 6.5 Hz); 3.90 (dq, 1H, 1Jpy = 214.8 Hz, 3Jyy = 7.6 Hz); 6.33 (qd, 3Jyy = 7.0 Hz, 3Jpyg =
7.0 Hz) ; 31P NMR (CDCl3) & : -49.6 (1Jpy = 207.9 Hz) and -71.6 (1Jpy = 214.8 Hz, 2Jpy = 14.2
Hz); 13C NMR (CDCl3) 8 : 4.35 (qd, Yy = 130.9 Hz, Ucp = 9.7 Hz); 15.6 (qd, Ycy = 125.6 Hz,
3¥cp = 9.7 Hz); 132.9 (d, Wcp = 34.6 Hz); 138.8 (dd, !Jcy = 150.0 Hz, 2Jcp = 24.1 Hz) and 3.64
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(qd, VUcy = 131.7 Hz, Ucp = 9.7 Hz); 16.8 (qd, 1Jcy = 128.2 Hz, 3Jcp = 21.5 Hz); 131.0 (d, Ycp=
39.5 Hz); 136.8 (dd, lJcy = 157 Hz, 2Jcp = 37.8 Hz). HRMS calcd for C4Hg33CIP 122.0052; found :
122.005. 4c : (yield : 65%) 1H NMR (CDCl3) & : 1.29 (d, 3H, 2Jpy = 4.2 Hz); 1.94 (s, 3H); 2.07 (s,
3H); 3.82 (d, 1H,1Jpy = 217.5 Hz); 31P NMR (CDCl3) § : -61.4 (A\Jpyg = 217.5 Hz); 13C NMR
(CDCl3) 8 : 4.39 (qd, Yy = 131.2 Hz, Ucp = 9.7 Hz); 22.9 (qd, 1cH = 131.7 Hz, 3Jcp = 3.6 Hz);
23.4 (qd, YUch = 131.7 Hz, 3Jcp = 29.1 Hz); 124.7 (d, Ycp = 37.0 Hz); 145.9 (d, 2Icp = 25.7 Hz).
HRMS calcd. for CsHyg33CIP : 136.0209; found : 136.021.

11. Selected spectroscopic data : 5a : (yield : 31%) 1H NMR (CDCl3) 8 : 1.35 (dd, 3H, 3Jgy = 7.6 Hz,
2Jpy = 4.2 Hz); 2.71 (d, 1H, 4Juy = 3.3 Hz); 3.96 (ddq, 1H, Jpy = 221.4 Hz, 4Jyy = 3.3 Hz, 3lyng
= 7.6 Hz); 31P NMR (CDCl3) 8 : -115 (1Jpyg = 221.4 Hz) ; 13C NMR (CDCl3) 8 : 4.6 (qd, HIcy =
131.6 Hz, 1Jcp = 7.0 Hz); 80.8 (d, 1Jcp = 21.0 Hz); 92.0 (dd, 1JcH =245.0 Hz, 2Jcp = 1.8 Hz). IR
(film; 77K, cml) : vpg : 2280 (m); veee : 2025(w). HRMS caled for C3HsP : 72.0128 ; found :
72.0130. 5b : (yield : 35%) 1H NMR (CDCl3) & : 1.30 (dd, 3H, 3Jyy = 7.3 Hz, 2Jpy = 4.1 Hz); 1.93
(d, 3H, 4Jpy = 1.0 Hz); 3.63 (dq, 1H, Upy = 213.0 Hz, 3Jyy = 7.3 Hz, ); 3P NMR (CDCl3) 5 -114
(UJpg =213.0 Hz) ; 13C NMR (CDCl3) 8 : 5.1 (q, Uen = 131.6 Hz); 5.3 (qd, Wen = 131.4 Hz; licp
= 6.5 Hz); 73.7 (d, Ucp = 12.2 Hz); 101.3. IR (film; 77K, cm-1) : vpy : 2260 (m); vCeC : 2178 (W).
HRMS calcd. for C4H7P : 86.0285; found : 86.0286.

12. Selected spectroscopic data : 6a : TH NMR (CDCI3) 3 : 1.22 (dd, 6H, 4Jpy = 1.8 Hz, 3Jgg = 6.7 Hz);
1.25 (d, 3H, 2Jpg = 6.7 Hz); 2.93 (d.hept, 1H, 3Jpy = 3Jgy = 6.7 Hz); 5.47 (ddd, 1H, 3Jpy =
26.0 Hz, 3JaHcis = 11.7 Hz, 2Jgy = 1.7 Hz); 5.58 (ddd, 1H, 3JHHcis = 12.0 Hz, 3 JHHirans = 18.2 Hz,
2]y = 1.7 Hz); 6.34 (ddd, 1H, 2Jpyg = 20.6 Hz, 3Jgu = 18.2 Hz, 3Jgyg = 11.7 Hz). 31p NMR
(CDCl3) § : 3.2. 13C NMR (CDCl3) 8 : 16.0 (gd, 1Jog = 130.0 Hz, cp = 19.3 Hz); 27.1 (qd, en
= 126 Hz, 3Jcp = 3.0 Hz); 39.1 (dd, ey = 142 Hz, 2Jcp = 20.6 Hz); 125.4 (dd, licy = 157.5 Hz,
1Jop = 17.2 Hz); 142.5 (td, ol = 150 Hz, 2Jcp = 25.9 Hz). HRMS : calcd for CgH13PS: 148.0476;
found: 148.047. IR : veue : 1610 el (w).

13. Ethenylidene-methylphosphine la : (yield : 28% from 3a and 26% from 4a) !H NMR
(CD2Cl12/CCI3F, -80°C) & : 1.49 (td, 3H, SIyy = 2.9 Hz, 2Jpy = 0.5 Hz); 5.46 (dq, 2H, 3Jpy =
26.0 Hz, 5y = 2.9 Hz); 31P NMR (CD2Cla/CCI3F, -80°C) & : 42.0 (3Jpy = 26 Hz (d)); 13C NMR
(CD2Cly/CCI5F, -80°C) & : 10.4 (qd, UJen = 132.8 Hz, Hep = 40.3 Hz); 95.2 (d, Loy = 168 Hz,
2Jcp = 13.6 Hz); 250.4 (d, Lcp = 24.6 Hz). IR (film, 77 K, cm-!) : 2970 (s); vC=C : 1715 (s); 1255
(m); 950 (s); vc=p : 869 (s); 653 (m). HRMS calcd for C3HsP : 72.0128 ; found : 72.0130. Prope-
nylidene-methylphosphine 1b : (yield : 26% from 3b and 32% from 4b) 1H NMR
(CD2Cl/CCI3F, -80°C) & : 1.42 (d, 3H, SJyy = 2.6 Hz); 1.81 (d, 3H, 3]y = 1.3 Hz,); 5.85 (dqq,
1H, 3Jpy = 23.3 Hz, 5Jgg = 2.6 Hz, 3Jgy = 1.3 Hz); 31P NMR (CD2Cly/CCI3F, -80°C) 8 45.3 (3Jpy
=23.0 Hz) ; 13C NMR (CD2Cly/CCI3F, -80°C) 6 : 11.3 (qd, YJcH = 132.0 Hz, Ncp = 41.3 Hz); 17.5
(qd, 1Jcy = 127.8 Hz, 3Jcp = 25.2 Hz); 107.6 (dd, ey = 157.3 Hz, 2icp = 11.3 Hz); 247.2 (4,
1Jcp = 24.5 Hz).

14 These values can be compared with the calculated Vo and ve=p values of the parent compound :
Nguyen, M. T.; Hegarty, A. F. J. Chem. Soc., Perkin Trans I 198§, 1999-2004.

15. 2-Methylpropenylidene-methylphosphine Ic : (yield : 38%) 'H NMR (CD2Cl/CCI3F, -80°C)
5:1.34 (s, 3H); 1.81 (d, 6H, 4JpH = 9.8 Hz); 31P NMR (CD,Cly/CCI3F, -80°C) & : 39; 13C NMR
(CD45Cly/CCIaF, -80°C) 8 : 12.5 (qd; Wcy = 131.6 Hz, 1cp = 42.4 Hz); 22.1 (qd, 1Jcy = 128.6 Hz,
3Jcp = 11.4 Hz); 118.6 (dhept, 2Jcp = 10.0 Hz, 3Jcy = 6.7 Hz); 209.0 (d, Jcp = 23.8 Hz). HRMS
calcd for CsHoP : 100.0442 ; found : 100.044.
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